

www.fda.gov

The Role of Risk Assessment: A Review Perspective

Celia N. Cruz, Ph.D.
United States Food and Drug Administration (FDA)
Office of New Drugs and Quality Assessment
24-Jan-2013
IFPAC

1

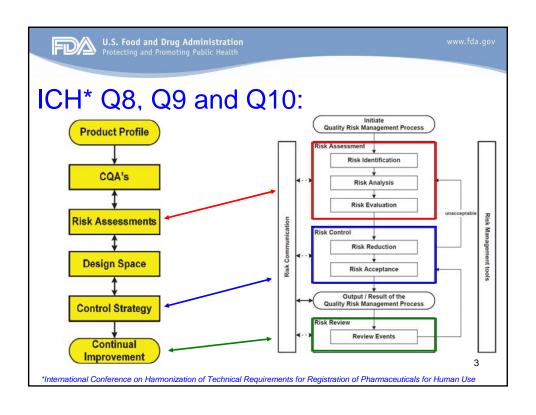
www.fda.gov

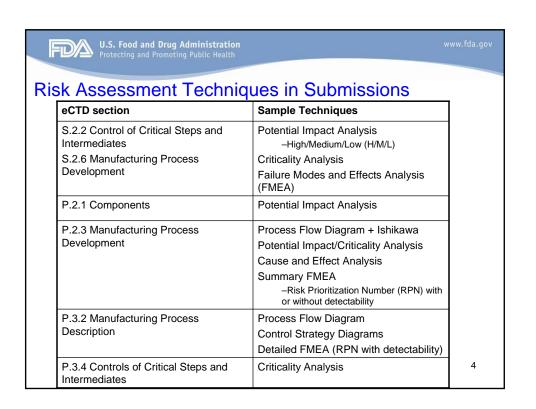
Outline

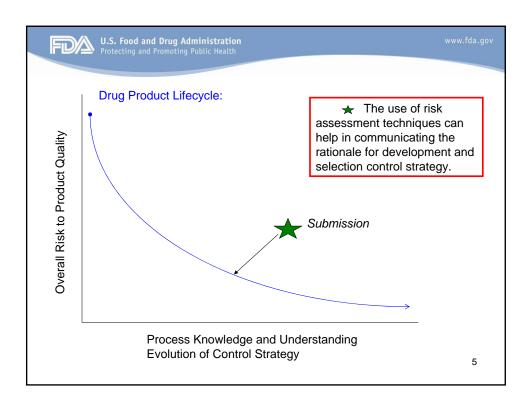
Discussion of role of risk assessment in drug product lifecycle:

- Submissions
- Reviews

Examples of risk assessment in submissions addressing:


- Early Development
- Late Development
- Adequacy of overall control strategy,
- Continual improvement


Examples of risk assessment in review addressing:


- Evaluation of adequacy of control strategy
- Intra-agency communication
- Development of regulatory policies

Conclusion:

- Key components in submission of risk assessments

Risk assessment summaries and results are included in all types of submissions.

- Original New Drug Applications
- Response to Information Requests
- Supplements

U.S. Food and Drug Administration
Protecting and Promoting Public Health

Difference in the type of risk assessment used generally depends on

- Stage of development (early vs. late)
- Type of question (general screening vs. specific ranking)

www.fda.go

Example 1: Early Development

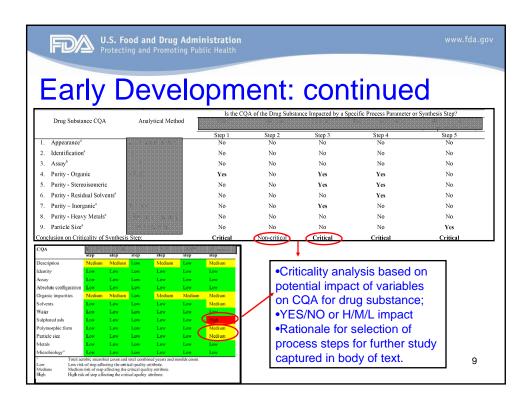
<u>Goal</u>: Risk identification and prioritization of development, as to focus on factors with High/Med impact to quality and on unknowns

<u>Tools</u>: Less quantitative approaches that allow risk mapping across a process that may not be completely defined

Examples: evaluation of impact of...

- drug substance attributes on final drug product;
- variance of excipient loading or grade (formulation robustness);
- formulation changes on bioperformance;
- process scale up and starting material specifications on drug substance impurity profile

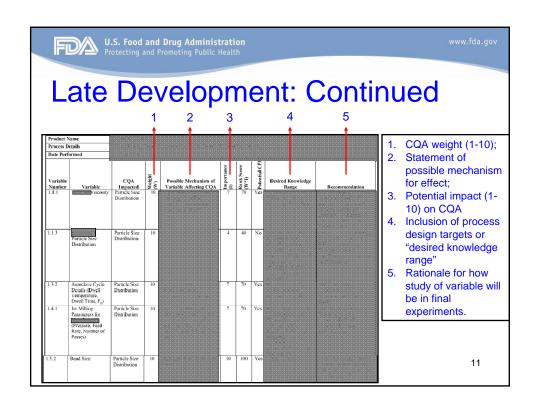
Outcome:

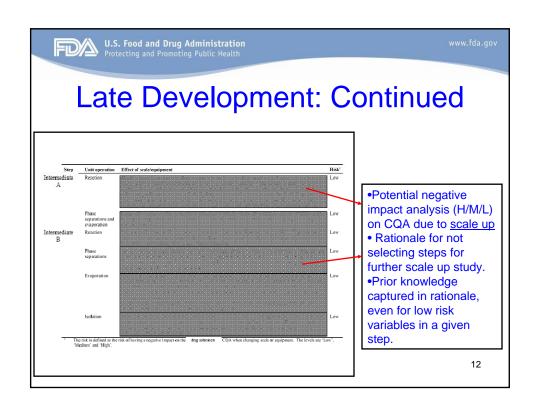

- capture of prior knowledge within organization,
- formulation and process selections
- justification of areas for study
- overall screening of variables feeding experimental design for late stage

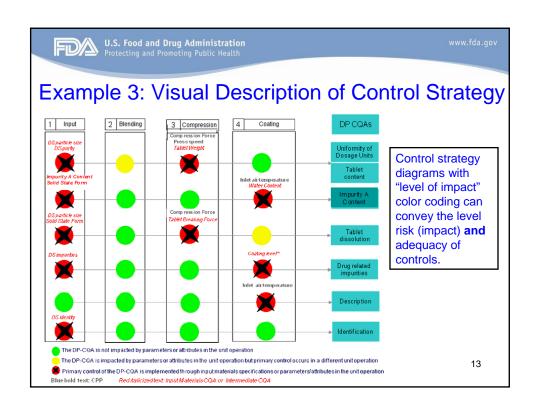
U.S. Food and Drug Administration
Protecting and Promoting Public Health **Development:** continued Risk assessment Risk assessment using screening of variable by impact and prior knowledge for using H/M/L ranking based on severity, as defined further risk assessment 1.5 Jar Milling/Particle Size Reduction
of Quality Candidate for Rank Scoring Risk Material Attribute

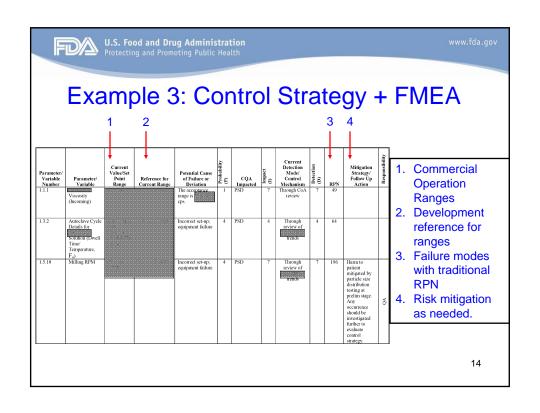
Bend Type Attributes Particle Size Distribution Low Characteristics Bend Loading Active Loading Particle Size Distribution, Nepafence Assay Particle Size Distribution Volume Ratio
Particle Size Distribution Active Sterilization Details for Active/Vehicle (as N/A Particle Size Distribution Milling Time Particle Size Distribut rocessing and torage conditio Criteria

Small to moderate change of this attribute or process parameter has a significant impact on a DP CQA.
Large change of this attribute or process parameter or a
small change in this parameter in combination with other. Extremely severe Comments sections convey rationale and input into Moderately severe small change in this parameter in combination with other factors has a significant impact on a DP COA. Large change of this attribute or process parameter in combination with other factors had a significant impact on a DP COA.

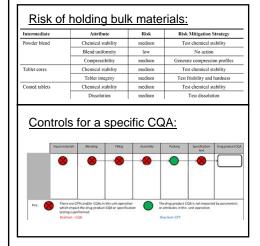

The attribute or process parameter has no impact on DP COAs. experimental or development plans Can include reference to development documents or data in submission






 Description of parameter ranges with regards to low vs. high risk operation (e.g. Normal vs. Proven Acceptable ranges vs. knowledge space); Contribution of detectability and in process controls to overall risk

reduction. Proposals for further monitoring.



Example 4: Response to information requests:

Abbreviated risk assessment can be used effectively to address information requests or to provide rationales for controls on a specific CQA.

★ Some key questions from risk-based review perspective:

- · Have all the critical quality attributes been identified and?
- Have the potential risks to quality been identified?
- Is there an adequate level of process knowledge and understanding to address the potential risks and to justify the proposed controls?
- Are the proposed controls sufficient to assure product quality during routine production?

Risk Assessment in Review

Goal: Risk identification and evaluation of adequacy of controls.

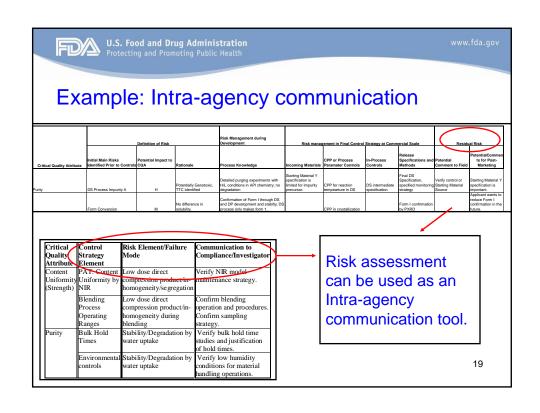
<u>Tools</u>: Typically accommodate less quantitative approach to allow overall mapping and summary of comprehensive control strategy (material, process, analytical) and the link to critical quality attributes.

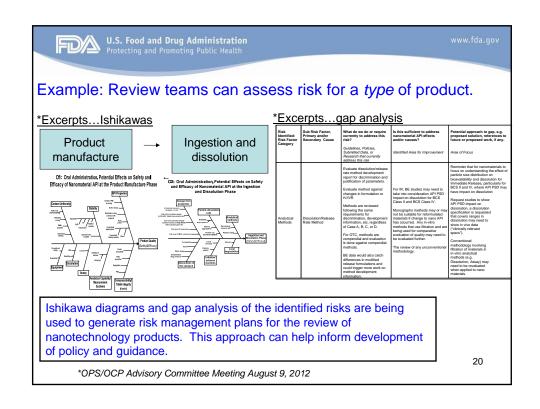
Outcomes:

- Focus of review on high risk factors to enable targeted questions;
- Evaluation of adequacy of final control strategy;
- Communication of risk intra-agency (e.g. post marketing and/or field investigators during a submission);
- Focus on high risk areas for guidance writing.

17

www.fda.gov


Example: Evaluation of Control Strategy


CQA of finished product	Excipient attributes that could have an impact on CQA	Controls in place
Appearance	Color of coating powder	Monitored by supplier's certificate of analysis
Assay	Particle size of mannitol and micro crystalline cellulose (MCC)	Fineness specification set as given in table 3.2.P.4.1.1-2
Content uniformity	Particle size of mannitol and MCC	Fineness specification set as given in table 3.2.P.4.1.1-2
Degradation (primary factors causing degradation are moisture and oxygen)	Loss on Drying (LOD) of MCC, croscarmellose sodium and hypromellose	Limits in place for acceptable water level that are tighter than ICH guidelines
Dissolution	Particle sizes of croscarmellose and hypromellose; magnesium stearate specific surface area	Fineness specifications for croscarmellose and hypromellose as given in table 3.2.P.4.1.1-2, no specification for magnesium stearate specific surface area
Drug Substance Form	LOD of MCC, croscarmellose sodium and hypromellose	Limits in place for acceptable water level that are tighter than ICH guidelines

Reviewer assessment of adequacy of control strategy for control of drug substance impurities (ICH Q11)

					Residual Risk and	
Compound	PDE or TTC in DS	In-Process Monitoring	Control Points	Observed Levels in DS	Monitoring Strategy	
R-CO-CI	1.5 ug/day		Final aqueous workup	< 10% of TTC		
Intermediate 1	1.5 ug/day	IPC: ≤ TTC prior to workup of Int 2	Consumed by reduction step; litle further reduction	30-60% of TTC		
Toluene	890 ppm	≤2000 ppm in spec of Int 1	3 drying steps; Purge data	< 10% of PDE		
Palladium	100 ug/day		Amoun: of metal scavenger (redundant GMP control); Purge data; Spiking data	Not detected LOD = 10% of PDE		
Thionyl Chloride	1.5 ug/day	-	4 aquecus workup and drying steps	Scientific principles or data show not present in DS		

Reviewer assessment of impact of excipient properties on CQAs related controls:

www.fda.go

Conclusions

- Formal risk assessment in an NDA is not required, but can be very beneficial to the review process.
 - The summary of a risk assessment exercise can be an effective way to communicate the rationale for development and adequacy of a control strategy.
 - Industry can use risk assessment to prioritize development and to focus on high risk areas for quality risk management.
- Reviewers can use risk assessment to confirm adequacy of control strategy and to prioritize the review.
- There is overall flexibility in the use and presentation of risk assessment tools, as long as, risk factor definitions, rationale, and links to supportive data are captured.
- Risk-based communications could facilitate transparency within a quality risk management framework.

21

www.fda.nov

Questions, comments, concerns: NewDrugCMC@fda.hhs.gov